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ABSTRACT

A guaternion is a generalized complex number with four
elements. This memorandum summarizes several properties of
quaternions scattered through the literature which are related
to the kinematical problem in spacecraft attitude control. The
results provide background for understanding the "strapdown"
calculations to be used for workshop attitude determination

during the Skylab mission.
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1.0 INTRODUCTION

The quaternion invented by Hamilton (1843) provides a
convenient formulation for Euler's Theorem which is the basis
for the kinematical relationships involved in rotational motion.
In general, a quaternion (g) is defined as the hypercomplex
number

q=q0+iq1+jq2+kq3=q0+g (1)

with the properties

ij = =31 = k ~ik = ki = j

jk = -kj = 1 i2=32=x%=11 (2)
The complex conjugate of ¢ is

¢* 2qy-gq (3)
Also ¢ is a unit quaternion if

@ =2+l = (4)

Hence the inverse (q-l) of a unit quaternion is its complex
-1

conjugate, ¢ — = ¢¥.

Alternatively, ¢ can be regarded as a 4 element
vector where

¢ = ;o a=4a, (5)
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with special rules, analogous to (2) applicable for quaternion
products. The corresponding inverse is

L= (6)

2.0 RELATION TO EULER'S THEOREM

Euler's Theorem states that the general displacement
of a rigid body with one point fixed is a rotation (8) about
some axis (e). (See Figure 1.) If €1r €5, €4 define components

FIGURE 1 - EIGENAXIS AND EULER ROTATION ANGLE

of the unit vector e (eigenaxis) along (i j k), the four param-
eters devised by Euler (1776) for defining body orientation are
£ = e sinte/2)
n = e, sin(6/2)
(7)
z = ey sin(8/2)

X = cos (6/2)
the quaternion formulation is then

¢ = x * it + jn + kt = cos(8/2) + (ie; + je, + ke3)sin(e/2) (8)
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or in vector form

q e sin(6/2)
(9)

BS
It
i

qq cos (6/2)

3.0 QUATERNION PRODUCTS

As given by Euler, the result of two successive rota-
tions (el, then 62) about respective eigenaxes‘(gl; 92) is

represented by the quaternion product

=49 49 (10)

where the elements of a9 and ¢, are both referred to the original
coordinate frame. In general the product of two quaternions

/L=r0+£ (11)
and
p:po +P. (12)
can be written as
m=my +m=pr= (py rg = p-r) + (Pxr + py £ + ry p)  (13)

or for reverse order

S
I
o‘d
+
s
i

np = (py ¥y = Prr) + (=pxr + py r + ry p)  (14)

The effect of inverting order of the product is a change in sign .
of the term pxr.

The quaternion product can be expressed in matrix form
as

m
m=prn = { =M, = M, (15)
Ty Lo Py

i
i
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and
n N r b
n=ap = =M, = M, (16)
Ry Lo Py
where*
P0E+§:B PoE - B! p
M = e e M o= |- — == 17)
p T ‘ ! p _ T (

and M, and ﬂn are defined analogously.

1 1

Consider the triple product p ~n = p ~ap. From (13)

through (17) it follows that

| ,
1 n PoE - BB n B n+pyn- ngp
prm=M = - = o
P "\ P | Pol (Mo Pg Bp PR
(18)
and
-5 r + +
n P LT PoL ™ XyR
np = n =( )= (19)
T
"o Py Ty " B L

_ *E is a 3x3 unit matrix, T represents the transpose opera-
tion and v over a vector reflects the cross product operation

(i.e., P is a 3x3 matrix and i\ig"—' 0).
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Thus*

" T
~B(-BE * P + ¥gR) + Py (-Pr+ por+rop) = (Pgrg = p )P

T T, ~
P (PpTg~R L) + P (-pE+ por+ ryp)

|
(=]

(20)
4,0 COORDINATE TRANSFORMATIONS
Hamilton has shown that a vector rotation can be
expressed as a quaternion product
vt =quv ¢t (21)

where** v'=y', v=v and ¢ is the quaternion associated with the
vector rotation from v to v'. Both v' and v are expressed in the
same coordinate frame.

The analogous form representing coordinate transforma-—
tion is

X = q X" q (22)

where xl=xl and x2=x2 define coordinate axes in coordinate frames

1 and 2. A superscript 1 may be added to ¢ to emphasize that it
"is expressed relative to frame 1.

*E is a 3x3 unit matrix, T represents the transpose opera-
tion and ~ over a vector reflects the cross product operation

(i.e., p is a 3x3 matrix and § p=0).

**Three dimensional vectors can be regarded as gquaternions
with zero real part (i.e., v6=v0=0).
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The relationship with the direction cosine matrix (A)
can be seen after relating (22) to (20) with p=¢ expressed as

in (9) and nle=§1 (3.r0=x0=0). Then,

x _ [§ & +q2E - 29, § +qgqlx ax’
2 _J2& 1.1 4327 9 02T 2L 12
x° = = q XU g = =
0 0 0
or
x% = axt (23)
Substituting elements of g from (1) into A yields
A=dd+raqE-2d+aq (24)
(% -q2 -a?+ad) 2( ¥ ) 2( - ) ]
g7 =45 ~4a3 +d; d; 95+ d3 9 4y 93~ 9y 99

2_2_ 2. 2
= |2(ag 9p-a3 9p)  (@-ayp-a3tay) 2(ay 93t 9 9p)

2 2. 2
1™ 93+ 9p)

2
z(ql q3+q2 qo) 2(q2 q3—ql qo) (q3"q

e

-

Expanding A with g and q, as in (9) yields*

A=288s%(/2) + c2(6/DE - 2 s(6/2) c(6/2)& + e &F s2(0/2)

+E+eells?(e/2) - &s6 (25

e

[c?(e/2) - s%(e/2)1E + &

c6 E + (1-co) e g? -

Il

sé

joe

which is the generic form of A in terms of e and 6.3 Thus, A
can be calculated from either (24) or (25) depending on whether
(g,qo) or (e,6) is given.

*Note the identity: E + § é = e g?. For brevity, sin( )=s( )

and cos( J=c( ).
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In dynamical problems (g,qo) can be determined from

the quaternion differential equation 215,6

QDo
t

3q9 (26)

w
Q= { } (27)
0

represents the angular velocity of coordinate frame 2 relative to
frame 1. The matrix form of (26) is

where

g q 8 juffa

! =1 q
Mq dq 2 —9? i 0 dp (28)

99

1t
N

This result offers the advantage of solving only 4 differential
equations instead of 6 as normally required in solving for ele-

ments of A from A = -&A and orthogonality constraints on A.

5.0 ALTERNATE QUATERNION PRODUCT FORMULATION

In (10) the quaternion product
¢ =4, 44 (29)

represents two successive rotations (61,62) about eigenaxes
(gl,gz). In terms of coordinate transformations this represents

transformation from frame 1 to frame 2, then from frame 2 to
frame 3. Also qq and ¢ must be expressed in frame 1. To

account for the rotational seguence and the frame to which quat-
ernions are referred, (29) is rewritten as

1 _ 1 1
413 = 423 42 (30)
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where the superscript indicates quaternion frame of reference
and the subscripts, the rotational order. In general

1 1

S * & 8 0 l l
Uh-1,n Q33 432 (31)

Tin =

The problem with this formulation for handling success-
ive rotations is that all guaternions must be expressed in frame
1, which is not always convenient. This can be circumvented as
follows. Consider

3 _ 1 .,-1 .1, 1 _ 1 ,-1 1 .,-1 1,1 1
and
3 _ 2 .,-1 .2, 2
X (q23) X (q23) (33)
Since
2 _ 1 .,-1 .1,.1
X% = (qlz) x(q7,) (34)
it follows that (33) is
3,2 .-1 ,1,-1_.1,1 2y

Comparing (32) and (35) yields

1,2 1,1
(a15) (a33) = (433) (a3,)

or 1

-1
453 )

i

(a7,) (a24) (a7, (36)

Thus, (30) can be written as

-1

1
013 = (@75 (@53) (a0 (al,) = (a1,) (a3 (37)
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and in general

n-1 )

l - l e 6 ¢ 8
Un = (qu) : (qn—l,n (38)

This permits each quaternion in a product to be expressed relative
to the local frame in which the rotation is made.

6.0 INTERCHANGEABILITY OF QUATERNIONS IN QUATERNION PRODUCTS

From the quaternion product formulations in (15) - (17)
it is evident that a choice can be made on the order of terms in
the matrix-vector product corresponding to 49 qp- This property

is useful when a sequence of gquaternion products contains ele-
ments which vary at widely different rates, e.g.,

1 1 1 1
Q14 = 434 923 192 (39)

where q§4 is constant, qiz varies slowly and Q%B varies more

rapidly. As discussed by Ickes 4 a substantial computational
time saving can be realized by organizing the quaternion product
such that

A |
114 = M @33 (40)
where M is a quaternion coefficient matrix associated with qiz

and q§4, which need not be updated continuously, only at inter-

vals. M is obtained by writing (39) as in (15) and (17) with
the same notational convention for the coefficient matrices and
quaternions. Thus

1 1 1 _ .1 - 1 1

Q14 = M34 933 = M34 M3 453 = M 433 (41)
or also

1 . 1.1 1 1 1

214 = Mo G4 = Mjp M3y 953 = M 53 (42)
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so that

1 51 ~1 1

M= M3y My, = My, M3,

(43)

which is Ickes result with all e 5 and Mij referred to frame 1,

For the alternate formulation of a quaternion product,
as in (38), with all 4 5 expressed in a local frame, a corre-

sponding result can be obtained.

Ay, = 91 953 Q3q = M7, W3y 3 (44)
ox
q%4 = ﬂ§4 My 433 (45)
so that
M= Miz f"§4 = @4 M2 (46)

y o2

1022-BDE~cds B. D. Elrod
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